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1.Introduction 
Since the 1950s, a substantial portion of the statistical information generated by national statistical 
agencies has originated from sample surveys. Since they were established, sample surveys have 
been serving as the primary means to acquire reliable, accurate, and regularly updated information 
regarding the national population and businesses. Beyond describing the world, the data derived 
from these surveys have been serving various purposes, including informing policy decisions related 
to economics, social issues, and health. Additionally, they have been contributing to the assessment 
of the impacts, monitoring the overall health and economic conditions of the population, guiding 
decisionmaking for businesses and individuals, and fostering extensive research in economics, 
health, and social domains. 

However, in recent years, surveys have encountered several challenges, including diminishing 
response rates, escalating costs, and a growing demand from users for more timely and granular 
data and statistics. The wealth of information is far from being threatened though. Nowadays, there 
has been a surge in data from alternative sources, such as administrative records generated by 
government agencies, satellite and sensor data, private-sector information like electronic health 
records and credit card transactions, and massive datasets accessible on the internet. 

Novelties often come with questions: How can these emerging data sources be effectively utilised 
to complement or even substitute some of the information traditionally collected through surveys? 
How can they pave the way for new possibilities in generating information and statistics that 
contribute to the improvement of society? 

The use of alternative data sources encounters some problems and at the same time affects 
classical survey programs. For instance, new data sources may lead to changes in measurement, 
and the existence of innovative data sources needs the development of approaches to link these 
alternative sources to universal frames to assess representativeness. 

The past two decades have seen a profound “data revolution" in the field of social sciences, 
propelled by technological advancement. This era has provided researchers with access to diverse 
and extensive datasets in electronic formats. A significant portion of cutting-edge quantitative social 
science research stems from the creativity of researchers who skilfully integrate disparate datasets 
collected independently. 

The emergence of new data sources, coupled with evolving perspectives, has broadened the scope 
of data integration and harmonisation, accentuating the need to explore, exploit, and develop 
statistical techniques in the realm of data integration. This expanding landscape necessitates 
ongoing research to address the complexities inherent in this dynamic field. Leveraging multiple 
data sources holds the potential to enhance the production of official statistics and advance 
research. The long tradition in the integration of survey data, such as EU-SILC, with national 
administrative data (income data registers, students registers; see, e.g., Jantti et al., 2013) is an 
example of how combining different data sources may allow the measurement and monitoring of 
social mobility, inter-generational inequality, and poverty. There are many other examples of 
opportunities given by the integration of different sources. For instance, if one is interested in 



 

SPES – Sustainability Performances, Evidence & Scenarios  40 

analysing enterprises and their innovation and sustainable practices, one can integrate traditional 
sources, such as the national enterprises’ census or ad hoc surveys, with information from web 
scraping data where text analysis is performed to the text on their website (see, e.g., Van der Doef 
et al., 2018; van den Brakel et al., 2019). When a probability survey is available for the target 
population of enterprises (e.g., a survey on start-ups), one can use methods to combine this 
information with the data arising from web scraping to make inferences about the determinants of 
innovation for this company. For a final example, we move to the dimension of environmental 
sustainability. The extensive availability of satellite imagery allows granularity and timeliness of data 
production on, e.g., land use (see, e.g., the CLMS project3). At the same time, the collection of daily 
pollution data via sensors is well established (see, e.g., the CAMS project4). Leveraging surveys at 
the municipal level, collecting - among other things - information on urban green areas, waste 
production, presence and activity of waste-disposal plants (among others, see the Italian urban 
environmental data survey), one could construct reliable and representative environmental 
indicators (UNOOSA, 2018). For further examples of the use of satellite imagery and remote sensing 
data, see Paganini et al. (2018); Anderson et al. (2017); Donaldson and Storeygard (2016). Yet, the 
integration of information from diverse sources requires meticulous attention, demanding a 
profound understanding of the distinctive properties inherent in each dataset and the statistical 
outcomes that arise from their harmonisation. 

This part of the report aims to provide an overview for a broader audience of the statistical methods 
developed in the last decades in Official statistics and Survey statistics to deal with data integration 
issues. This part of the report is structured as follows. Section 1 concerns data integration as 
methods to create a synthetic dataset merging information from different sources. Section 2 deals 
with the issue of combining probability and nonprobability samples for inference. Section 3 is a 
collection of blue boxes that supply available statistical software. The reader can find other kinds of 
boxes throughout the text: the green ones propose toy/practical examples to exemplify both the 
issues at stake and the yellow ones provide statistical details of the suggested methods. Finally, the 
Appendix includes a flowchart supporting the users in the choice of the most suitable methods 
according to their needs. 

1.Creation of a synthetic dataset 
In this section, we present two data integration procedures, namely, record linkage and statistical 
matching. Such procedures aim to integrate two (or more) datasets that contain information on a 
set of common variables and variables that are not jointly observed. As output, the implementation 
of these integration procedures gives a set of pairs of records. 

Although at first glance they could seem almost the same thing, record linkage and statistical 
matching differ in at least four aspects. The first two aspects concern the aim of the procedures and 
the nature  

 
 

3 Copernicus Land Monitoring Service  

4 Copernicus Atmosphere Monitoring Service  

https://land.copernicus.eu/en
https://atmosphere.copernicus.eu/air-quality
https://siqual.istat.it/SIQual/lang.do?language=UK
https://siqual.istat.it/SIQual/lang.do?language=UK


 

41 

 

 

 

 

 

 

 

of the information to integrate. Record linkage mainly aims to identify pairs of records corresponding 
to a single statistical unit that are present in different databases; statistical matching seeks to derive 
integrated statistical information by combining information from different datasets in which only 
some variables are observed twice and the overlapping of observed units is not necessary. Another 
aspect concerns the fact that, in a record linkage procedure, the common variables are sometimes 
misreported or subject to change, while statistical matching does not have to deal with the problem 
of the quality of collected data. Record linkage provides a solution to the problem of the quality of 
collected data collected introducing the linkage procedure parameters such as the probability of 
having observed the variable without noise. Finally, the procedures differ in the hypotheses at the 
base of the methodologies; while record linkage may not introduce any strong assumption on the 
conditional distribution of the variables of interest, statistical matching mainly works assuming 
conditional independence. 

As portrayed in Figure 1, following the ranking outlined by Asher et al. (2020), first, we have 
deterministic record linkage which is the most traditional methods that rely on rules-based data 
integration. It involves simply combining records that share an identical key, such as a unique 
identifier, or when this is not available, a set of identifiers (referred to as a key) that uniquely identify 
an individual. Typically, this key is available for most records in one or more datasets. In probabilistic 
record linkage, a probability model is used to assess the probability that a pair of records represent 
the same entity. Statistical Matching, instead, is the most model-driven methods that match records 
with similar characteristics across multiple covariates, allowing for comparisons of values for a 
different set of variables. 
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1.1.Record Linkage 
Record linkage, known by various terms such as data linkage, record linkage, data matching, entity 
resolution, deduplication, data matching, and instance matching, is the practice of identifying 
records in two or more data sources that pertain to the same entity. When the linkage process is 
precise and reliable, then the information from the sources can be merged, allowing researchers to 
study relationships among variables measured in the individual sources. The effectiveness of a 
record linkage method hinges on the extent to which the information available in the two sources 
can successfully distinguish and link records i.e., individual persons, households, or businesses. 
Many methods exist for linking records and assessing the quality of the linkages (for a 
comprehensive view see among others National Academies of Sciences, Engineering, and Medicine 
(2023), Binette and Steorts (2022), Asher et al. (2020), Reiter (2021). 
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Record linkage techniques are essential in various fields, including epidemiology, social sciences, 
and business analytics, as they facilitate accurate identity resolution, leading to more informed 
decisionmaking and research outcomes. These techniques enable the incorporation of variables 
measured in additional data sources into the primary data sources. For example, survey records of 
individuals can be linked to attributes related to the geographic regions in which survey respondents 
reside or the affiliations and associations to which they belong. Furthermore, when merging two or 
more datasets, each representing a subset of the population, these techniques enable the expansion 
of the dataset by increasing the number of records. They also facilitate the construction of 
longitudinal datasets by establishing connections between records associated with the same 
individuals over time, such as merging high school records with data on college completion. In a 
broader context, they offer a means to validate the accuracy of data within a source by cross-
referencing it with other sources (National Academies of Sciences, Engineering, and Medicine, 
2023). 

 

 

 

 

 

The process of linking records is a multi-stage operation that encompasses four distinct phases, 
with Record Linkage serving as just one of these pivotal stages (see Figure 2). Each of these stages 
plays a critical role in the overall process, from data preparation to record linkage, ultimately 
culminating in the successful integration of information from disparate sources. This sequential 
approach ensures a systematic and comprehensive handling of data, guaranteeing the accuracy and 
effectiveness of record linkage as an integral component of the broader procedure. In the initial 
stage, records are meticulously parsed to identify a common set of attributes or fields shared among 
the dataset. This step lays the foundation for subsequent comparisons. Attribute alignment includes 
also the standardisation of variables. Similar records are then thoughtfully grouped into ’blocks.’ 
Only records residing within the same block are subjected to direct comparison; records that do not 
share a block are promptly determined to be non-matches. This technique, often referred to as 
“blocking" is a crucial strategy aimed at reducing the number of potential candidate pairs that need 
to be examined. By grouping records based on specific criteria, blocking ensures that only records 
with shared characteristics are compared, thus effectively managing the scalability of record linkage 
in large datasets (Christen and Christen, 2012). Blocking, for instance, involves grouping records 
according to certain criteria, such as comparing records with identical zip or postcode values, which 
streamlines the linkage process (Asher et al., 2020). However, this approach comes with a caveat - 
the exact propagation of uncertainty from the blocking phase to the record linkage stage is not 
always achievable. Consequently, the record linkage task may inherit errors from the blocking stage, 
some of which may remain unresolved. Moving on to the record linkage stage, various methods are 
employed to identify matching records. This stage encompasses deterministic, probabilistic, or 
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machine learning-based classification strategies, all of which are instrumental in determining the 
degree of similarity between records. In the final stage, entities that have been successfully resolved 
as matches in the preceding stage are consolidated to create a singular, representative record. This 
consolidation step ensures that the merged record accurately represents the linked information, 
thus concluding the record linkage process (Binette and Steorts, 2022). 

Record Linkage tasks encounter a multifaceted trade-off, involving (i) the ability to handle large 
databases, (ii) ensuring the propagation of uncertainty throughout the entire data cleaning process, 
and (iii) developing methods that can effectively address the distortions and errors commonly found 
in databases.  

In the context of databases comprising a cumulative total of N records, there exist N(N − 1)/2 

possible pairs of records that might be correlated, making it infeasible to evaluate each pair as the 
database size expands. The user should assess the trade-off involving (i), (ii), and (iii) within the 
context of each specific application to determine the most fitting method (Binette and Steorts, 
2022). 

1.1.1.Deterministic Record Linkage 

Deterministic record linkage is a process that relies on a set of deterministic rules involving the 
comparison of attributes within records. It encompasses deterministic, rule-based, and similarity-
based methods (for references on deterministic algorithm see Adena et al., 2015; Ansolabehere and 
Hersh, 2017; Berent et al., 2016; Bolsen et al., 2014; Cesarini et al., 2016; Figlio et al., 2014; Giraud-
Carrier et al., 2015; Hill, 2017; Meredith and Morse, 2014). For instance, a straightforward example 
is exact matching, where two record pairs are linked only if they precisely match all common 
attributes. See Toy Example 1.1 for an illustration of the method. 

 

 

 

 

 

 

 

However, exact matching can be problematic, especially when dealing with data prone to 
enumeration and transcription errors, as it may exclude a significant number of true matches. While 
it effectively minimises the occurrence of false positives, it often results in a high rate of false 
negatives. Additionally, it tends to produce matched samples that are not representative of the 
overall population. To address these limitations, various strategies have been developed to relax the 
stringent matching criteria. This can involve allowing a certain number of attribute mismatches, 
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employing disjunctions of exact matching rules, or utilising similarity functions to gauge the 
similarity of records. These methods introduce flexibility and accommodate errors in the data, 
typically implemented through an algorithm that specifies a set of decision rules to determine 
whether two records are sufficiently similar to be considered a match (see for instance ABE method 
in Abramitzky et al., 2012, 2014, 2019). However, it’s important to note that deterministic approaches 
lack a built-in mechanism to account for uncertainty in the matching process. They do not employ 
probability models, nor do they provide a level of confidence in determining the matching status of 
record pairs. Despite this limitation, deterministic matching approaches can still be valuable, 
particularly when used as a blocking stage to prepare the data for subsequent probabilistic record 
linkage methods that incorporate uncertainty considerations. This two-stage approach allows for 
the scalability of more advanced techniques while benefiting from the efficiency of deterministic 
rules during the initial stage of record linkage. 

1.1: Deterministic Record Linkage 

1.1.2.Probabilistic Record Linkage 

While many social scientists have traditionally relied on deterministic methods for record linkage, 
probabilistic modelling has emerged as a predominant approach within the statistics literature, 
especially since the seminal work of Fellegi and Sunter (1969) (see Detail-box 2 for a comparison 
between deterministic and probabilistic). 

Probabilistic record linkage methods fundamentally involve calculating a match score for every 
possible pairing of records from two different datasets, based on their identifying variables. See Toy 
Example 1.2 for an illustration of the method. This match score is derived as the sum of the weights 
assigned to each identifying item used in the matching process. When two records agree for the 
specific item, a positive weight is assigned; in the case of disagreement of records falling outside a 
prescribed tolerance, a negative weight is assigned; and if an item is missing in either record, the 
weight is set to zero. For the treatment of missing variables see Detail-box 1.  

 

 

 

 

 

 

The weight allocated to an item is influenced, in part, by how effectively that item distinguishes one 
entity from another. For instance, when two records share an unusual first name like “Dexter”, it 
suggests a higher likelihood of belonging to the same individual compared to two records with a 
common first name like “John”. Consequently, the item weight for a match involving “Dexter” would 
be greater than that for a match involving “John”. Following the scoring process, each pair of records 
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can be categorised as a match, a non-match, or indeterminate. Pairs with scores exceeding a 
predefined cutoff value are identified as matches, indicating substantial agreement on numerous 
identification variables. Conversely, pairs with scores below a separate cutoff are categorised as 
non-matches, suggesting disagreements on enough identification variables to indicate distinct 
entities. If the highest score for a dataset record doesn’t reach the non-match cutoff, it’s considered 
to have no corresponding record in the other dataset. Pairs with scores falling between these two 
cutoff values may necessitate further review before a definitive determination is reached (National 
Academies of Sciences, Engineering, and Medicine, 2023). 

These probabilistic methods are needed in scientific applications where there is a need to account 
for all sources of uncertainty that might influence the validity of results. The primary challenge in 
these scenarios lies in accurately quantifying this uncertainty and integrating it into subsequent 
analyses. These methods are primarily geared towards estimating the probability of a match 
between pairs of records based on their comparison vectors. This pairwise match score serves as 
a metric for assessing uncertainty regarding specific links, with false match and false non-match 
rates (or precision and recall) being metrics for evaluating performance. It is worth noting that, with 
the exception of Bayesian approaches, most methods treat record pairs as independent entities, 
often overlooking the implications of transitivity or other constraints within the linkage structure. 
This limitation can hinder their practicality when linking more than two databases and when dealing 
with applications featuring duplication across or within databases (Binette and Steorts, 2022). 

In a simplified manner, the procedure followed in probabilistic record linkage can be reconstructed 
in various steps and can be portrayed in the workflow illustrated in Figure 3. 
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Classical Approach: The Fellegi-Sunter Model The Fellegi-Sunter framework (Fellegi and Sunter, 
1969) formalises the approach of Newcombe et al. (1959) in a decision-theoretic framework. We 
will review the Fellegi-Sunter probability model, its interpretation, and its underlying assumptions 
(Binette and Steorts, 2022). 

The Fellegi-Sunter framework operates on the principle of making independent decisions for each 
pair of records. Within this framework, three potential actions are considered for a given record pair: 
to establish a link, to indicate a possible link, or to abstain from linking altogether. The primary 
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objective is to strike a delicate balance between minimising the number of potential link 
assignments and maintaining control over the rates of false matches (Type I error) and false non-
matches (Type II error) (see Detail-box 5). The Fellegi-Sunter framework posits that an optimal 
linkage procedure should achieve the predefined error rates while concurrently minimising the count 
of potential link assignments. The framework introduces a significant concept known as the 
“fundamental theorem for record linkage" as established by its authors.  

The key idea is that during the linkage process, two specific probabilities must be estimated for each 
pair of records: m(γ), the probability of observing the comparison vector (γ) used to represent the 
level of agreement/disagreement between two specified records, for two records that are an actual 
match and u(γ), probability of observing the comparison vector for two records that are not a match. 
It follows that, if γ is an observation generated from the distribution m(γ), then the two records are a 
match.  

Instead, if it is generated from u(γ), then it can be asserted that the pair is made of two distinct units. 
This theorem demonstrated by the authors shows that the optimal linkage procedure corresponds 
to thresholding a likelihood ratio. More details on the model and the decision rule can be found in 
the Detail-box 3 and 4. 
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Figure 4 describes how the optimal rule works in a Fellegi-Sunter framework. Vertical lines in the 
diagram depict the thresholds. The left line denotes the lower threshold, while the right line denotes 
the upper threshold. The regions labelled FU and FM indicate the probabilities of false non-matches 
(FU) and false matches (FM). These regions correspond to the associated error rates for false 
nonmatches and false matches, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The probabilistic record linkage framework operates based on two critical independence 
assumptions: 

1. The latent (unobserved) variable that describes the match status is assumed to be 
independently and identically distributed. 

2. The independence of comparison vectors among record pairs; this is the Conditional 
Independence Assumption (CIA) i.e., the assumption of independence between the 
comparison variables given the match status of each pair. 

However, these assumptions often face challenges in practical applications. They often require 
transitivity closure within linkages, meaning that if a record links to another (a links to b) and that a 
second record links to a third (b links to c), it should imply that the first record links to the third (a 
links to c). Achieving transitivity closure can be complex and is not commonly realised in practice. 
Moreover, concerning the feasibility of estimating m and u distributions, the presence of latent 
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variable risks makes the model parameter unidentified, and often methods rely on simplifying 
assumptions that may not be valid. Since these assumptions frequently do not align with the 
complexities encountered in real-world scenarios, numerous extensions and variations have been 
developed in the literature to address these limitations. We provide an overview of these extensions 
in the “Modern probabilistic record linkage” section, highlighting how researchers have expanded 
upon the Fellegi-Sunter framework to accommodate more nuanced and practical situations. 

The other key aspect is related to the definition of the above-mentioned thresholds. It is important 
to note that the Fellegi-Sunter theory does not offer specific guidelines for establishing the 
thresholds to determine matches or non-matches. Instead, it operates on the principle that one can 
minimize Type I error (false positives) at the expense of Type II error (false negatives) or vice versa 
by setting these thresholds. Fellegi-Sunter proposes that a manual review of record pairs across a 
range of assigned weights can be conducted. This manual review aids in the identification of 
thresholds above which pairs are highly likely to be matches and below which pairs are highly likely 
to be non-matches. This empirical approach enables the fine-tuning of the thresholds based on the 
specific needs and characteristics of the dataset, ensuring that the linkage process aligns with the 
desired balance between minimising false positives and false negatives (Asher et al., 2020). 
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Modern Approaches to Record Linkage As mentioned in the previous sections, a crucial element in 
the application of probabilistic rules for record linkage revolves around the distributions of 
comparison variables corresponding to matches and non-matches, respectively. However, these 
distributions are typically unknown and necessitate estimation. Thus, the focus of the advancement 
in methods following the approaches by Fellegi and Sunter (1969) went in the direction of strategies 
for the estimation of these distributions. As described above, at the core of this framework is the 
idea that all pairs of records are assumed to be independently generated by a mixture of two 
distributions—one for matched pairs and another for unmatched ones. The assignment of matched 
and unmatched status to pairs is determined randomly by a latent (i.e., unobserved) dichotomous 
variable. In this section, we review modern probabilistic record linkage methods and their different 
approaches in estimation, which include extensions to the Fellegi-Sunter framework, Bayesian 
variants of Fellegi-Sunter, as well as machine learning semi-supervised and fully supervised 
classification approaches (Binette and Steorts, 2022) 

1) Extensions to F-S The model described above facilitates the computation of a likelihood function 
to be maximised for estimating the unknown distributions of the comparison variables for matched 
and non-matched pairs. Since we are in the presence of a latent (unobserved) variable, the 
maximisation of the likelihood function typically involves iterative methods for handling it, commonly 
the EM algorithm or some of its generalisations 

One of the primary directions for extending record linkage methods has focused on refining the 
criteria for setting thresholds (see Belin and Rubin, 1995). Part of the reason is that the error rates 
fixed in the Fellegi-Sunter framework, as well as the estimated false match rates, are not attained in 
practice. This discrepancy arises from several factors, including the simplifying assumptions and 
estimation errors inherent in the application of such probabilistic models. Moreover Winkler et al. 
(2000); Winkler (2002), and Larsen and Rubin (2001) instead considered fitting more complex 
models, allowing dependencies between field comparisons. Larsen and Rubin (2001) developed an 
iterative approach to lower as much as possible the number of records whose status was uncertain. 
Important to mention is the recent computational and methodological work of Enamorado et al. 
(2019) who scaled the F-S model to large databases, where they incorporated auxiliary information 
in the merge to inform parameter estimation and post-merge analyses which accounts for the 
uncertainty about the merge process. 

2)BayesianF-S Bayesian techniques rely on probabilities of a match or non-match for specific 
agreement patterns that are either based on expert opinion or previous projects. For example, one 
may be interested in linking two datasets containing the English equivalents of Arabic names, such 
as for the Syrian data in Tancredi et al. (2020). Assume to have information on how the transliteration 
was obtained; such information may be formally included in the probabilities of match and non-
match via appropriate prior elicitation. As is typical in a Bayesian approach, the prior information is 
then combined with the data, in with a new record linkage process involving new lists. At the end of 
the process, a posterior probability of match or non-match is determined for the record pairs, which 
allows the determination of links and non-links (Asher et al., 2020). Bayesian methods provide a way 
to quantify and propagate uncertainty for the joint linkage structure of a set of records (see for more 
detail Section 1.1.3 and Detail-box 6). 



 

SPES – Sustainability Performances, Evidence & Scenarios  54 

In the basic Bayesian Fellegi-Sunter framework the m and u probabilities were assumed to follow a 
probability distribution of some type; for example, a uniform distribution with all possible probability 
values being equally likely, or a Beta distribution, with the parameters of the distribution set based 
on expert knowledge. The optimal (mean) values from the posterior distributions of the m and u 
probabilities were then used to create the match weights and complete the linkage process. 

For a simple example of a Bayesian model, have a look at Detail-box 6. 

Several Bayesian extensions have been proposed in the literature and can be found in Fortini et al. 
(2001), Sadinle (2014), Sadinle (2017), Marchant et al. (2021), Tancredi and Liseo (2011), Ventura 
and Nugent (2014), McVeigh et al. (2019). In particular, McVeigh et al. (2019) addresses one of the 
main issues of the Bayesian approaches, which is their computational burden, which makes them 
difficult to implement with large datasets. They propose a blocking approach based on simpler 
probabilistic record linkage techniques. That is, the output of a simpler non-Bayesian probabilistic 
record linkage is used to perform “post hoc blocking”, after which a Bayesian Fellegi-Sunter method 
is used for coherent modelling and uncertainty quantification. This allows the authors to scale their 
proposed method to voter registration and census datasets with millions of entries. 

3)MachineLearningApproaches Computer science researchers have approached data linkage from 
a traditional binary supervised classification perspective (with the two classes being “matches” and 
“non-matches”, but with no “potential matches”), or from a clustering perspective (where the aim is 
to group all records that refer to the same entity into one cluster) (Christen, 2019). 

In machine learning, probabilistic record linkage can be replaced by one of several classification 
algorithms, whose goal is the creation of 3 clusters (links, non-links, possible links) which are formed 
to match the three regions of match weights in the Fellegi-Sunter algorithm (Asher et al., 2020). The 
ML approaches can be divided into: 

• SUPERVISED: a training set of data is used to “teach” a classification algorithm, such as 
decision trees, support vector machines, ensemble methods (i.e., random forests), or 
conditional random fields. 

• UNSUPERVISED: a method that does not rely on training data. An example is k-means 
clustering. In k-means clustering, for each pair, a measure of similarity for each field is 
calculated. Multiple similarity measures have been used within unsupervised record linkage 
Asher et al. (2020). 

Once each of the pairs of records has an associated similarity measure vector, the distance between 
different pairs of records is measured. Different distance measures can be used, a common one is 
the Euclidean distance (i.e., summing the squared distance across all the fields being compared). 
Record pairs that are “close” to each other according to the distance measure are formed into 
clusters. 

Fully supervised methods do not exploit the information provided by unlabelled examples; instead, 
they rely on larger numbers of labelled pairs. Given the significant class imbalance when considering 
record pairs (very few pairs match), vast amounts of reliable training data or carefully selected 
training data are required for the use of these methods. These training data may come from 
crowdsourcing or extensive manual record linkage efforts or they may be automatically generated 
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using unsupervised methods to obtain an approximate training set. However, in practice, the amount 
of reliable training data necessary to train sophisticated learning algorithms such as deep neural 
networks are not always available for record linkage tasks. Some examples can be found in Kooli et 
al. (2018) and Kasai et al. (2019). Moreover, the use of deep learning techniques in entity resolution 
is especially promising in application to unstructured or textual problems, where, for instance, pre-
trained language models can be used. For structured record linkage, simple classifiers (such as 
logistic regression, decision trees, random forests, Bayesian additive regression trees, and others) 
are often preferred. 

Clustering-based approaches to record linkage can integrate multiple databases (Sadinle (2014), 
Sadinle (2017), Marchant et al. (2021), Tancredi and Liseo (2011), Ventura and Nugent (2014) etc.). 
Many clustering approaches to entity resolution are based on pairwise similarities, pairwise match 
probabilities, or determined links and non-links. Therefore, they can be seen as post-processing the 
result of other pairwise record linkage procedures. Clustering can be for instance used as a 
postprocessing step, namely as a second step to probabilistic record linkage to enforce transitivity 
of the output (for a review and concrete examples see Christophides et al., 2020; Monge, 1997; 
Ventura and Nugent, 2014). 

 

1.1.3.The problem of assessing uncertainty 

As emphasised multiple times throughout this discussion, an essential concern in the realm of 
record linkage and the creation of a synthetic dataset, particularly in the context of post-merge 
analysis, revolves around the evaluation of the uncertainty inherent in the linkage process. It is 
crucial to acknowledge that the linkage process is inherently imperfect, introducing a layer of error 
that further compounds the uncertainties present in statistical analyses. Remarkably, linkage errors 
are seldom, if at all, considered in the realms of inference or data dissemination. This absence of 
attention to linkage error means that its potential impact on the accuracy and reliability of data-
driven conclusions remains largely unaddressed, highlighting the need for more comprehensive 
strategies to quantify and manage such uncertainties (for more detail see among other Reiter, 2021). 

The general sources of uncertainty in Record Linkage are: 

1. Imperfect Matching: Numerous record linkage methods result in a consolidated dataset 
containing a collection of record pairs that are considered the best matches based on specific 
criteria. In situations where perfect and unique identifiers are not available, this set may 
inadvertently include false matches. Furthermore, measurement errors can extend to the 
blocking variables used in the linkage process, further complicating the determination of true 
matches. The presence of these false matches can present challenges when drawing 
inferences from the linked data. When aggregated across many individuals, these errors can 
significantly distort estimates of the variables of interest, as well as their associated standard 
errors. 

2. Incomplete Matching: Incomplete matching in the context of record linkage signifies that not 
all individuals from the primary dataset find corresponding counterparts in the secondary 
dataset. Incomplete matching can introduce a subtle yet impactful “selection mechanism” that 
has the potential to skew the outcomes of statistical inferences. Even in cases where no overt 
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selection mechanisms are at play, and the linkage process can be considered “ignorable” for 
the analysis (as defined by Rubin, 1976), it is important to recognise that solely utilising linked 
cases results in the partial utilisation of available information. This selective approach can lead 
to inflated variances in the inferences drawn. 

Researchers have developed a variety of approaches to account for uncertainties in record linkage. 
The most common are: (i) modelling the matching matrix that indicates who matches whom as a 
parameter, (ii) embedding the linkage in a particular modelling task, and (iii) the imputation of 
incomplete links to address biases from incomplete matching. 

Concerning the former, one effective approach is to leverage Bayesian methodologies, as 
exemplified in works like those by Fortini et al. (2001), Tancredi and Liseo (2011), Sadinle (2017). 
For more details on the Bayesian approach to account for uncertainty see Detail-box 6. 

To account for the uncertainty in the linkage process, one can also embed the record linkage process 
directly in an analysis model, usually some regression involving (potentially multivariate) X and Y, to 
incorporate uncertainty in the inferences. Methods for doing so take two main forms: the adjustment 
approach (see Detail-box 7) and the use of hierarchical models. For the latter approach, the method 
implies the use of multiple imputations to fill in missing items for non-matched cases (for more 
details see Gutman et al., 2013). 
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1.2.Statistical Matching 
Statistical matching refers to a family of methods aiming at the integration of two or more datasets 
drawn from the same target population, that contain information on a set of common variables, X, 
and some not jointly observed variables, (Y,Z). Different from record linkage, statistical matching 
deals with data sources whose units are not necessarily overlapping. 

There are two main approaches to statistical matching: a macro approach and a micro approach. 
On the one hand, the macro approach to statistical matching aims at directly estimating the joint 
model of the variables of interest that are not jointly observed. On the other hand, the micro approach 
is devoted to the generation of a synthetic dataset with complete information on the variables 
observed only in one data source and those observed in two data sources. The dataset produced as 
an output of the procedure is said to be complete because all the variables of interest are contained 
in it; it is said to be synthetic because it is not a product of direct observation of a set of units in the 
population of interest, but it is obtained by exploiting information in the source files in some 
appropriate ways. The boundary between the two approaches is not clearly defined. Although the 
main objective of the macro approach is not the creation of a complete dataset, a synthetic dataset 
may be obtained as a by-product of the estimation procedure; We will briefly discuss this approach 
in Section 1.2.3. 

In practice, matching procedures devoted to the creation of a complete dataset can be regarded as 
an imputation problem of the target variables from a donor to a recipient survey (D’Orazio et al., 
2006). The relation between the common variables with the target variables observed only in one of 
the datasets -the donor dataset- is explored and used to impute to the units of the other dataset -the 
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recipient dataset- the variables that are not directly observed (see Detail-box 8) Thus, a synthetic 
dataset is generated with complete information on the target variables and the common ones. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differently from record linkage, when setting a statistical matching procedure it is essential to 

explicit our assumptions. The most common situation is when the variables that are never jointly 

observed are assumed to be independent conditionally on the available covariates; this is the 

Conditional Independence Assumption (CIA; see Detail-box 8). 
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Under the CIA, statistical matching procedures ensure that the marginal and joint distribution of the 
variables in the source files is reflected in the statistically matched file (Rässler, 2012). Any 
discrepancy between the real data generation model and the underlying model of the synthetic 
complete dataset is called “matching noise”. 

Statistical matching can be performed in a parametric and a nonparametric framework. 

1.2.1 Parametric micro approach 

Consider two data sources A and B; we observe (Y, X) in A and (Z,X) in B. We are interested in learning 
something about the joint distribution of Y and Z (or Y, Z,X). Under the CIA, the joint relation between 
the common variables and the variables not jointly observed can be modelled (see Detail-box 8). In 
other words, we assume a parametric model for the joint distributions of (Y, X) and  (Z,X). Once the 
parametric model is estimated, Z is imputed for each unit in A and Y is imputed for each unit in B. 
For the imputation, different techniques, such as conditional mean imputation and imputation from 
a distribution, can be implemented. See Toy Example 2.1 for an illustration of the method. 
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1.2.2.Nonparametric micro approach 

When we do not want to consider the possibility of assuming a distribution in advance, 
nonparametric frameworks are favored. One possibility is to use nonparametric estimation 
techniques to infer the relations between X and Y , and X and Z and then proceed as under the 
parametric framework just described. Another possibility is to avoid the estimation step and fill the 
missing values with existing ones; these kinds of procedures belong to the hot deck imputation 
family. 

Especially when the matching variables are categorical, a popular technique is the “random hot 
deck”. It consists of randomly choosing a record in the donor file for each record in the recipient file. 
The pairing is often done within strata or donation classes; their function is similar to the “blocking 
variables” of record linkage procedures. Whereas in the case of quantitative variables, the most 
popular nonparametric techniques are the “Distance Hot Deck” ones (Okner, 1972; Rodgers, 1984; 
Ruggles and Ruggles, 1974); each record in the recipient file is matched with the closest record in 
the donor file, according to a distance measure computed using the matching variables. When two 
or more donor records are equally distant from the recipient record, one of them is chosen at 
random. 

When each record in the donor file can be used as a donor only once, the distance hot deck procedure 
is said to be “constrained”. The main advantage of a constrained hot deck approach is that the 
marginal distribution of the imputed variable is maintained in the final synthetic file. On the other 
hand, the average distance of the donor and recipient values of the matching variables X is expected 
to be greater than that in an unconstrained case. D’Orazio et al. (2006) underlines the importance of 
the choice of the recipient file, which is usually the one to be used as the basis for further statistical 
analyses. For the sake of accuracy, as a rule of thumb, when the sizes of the two data sources are 
very different it is better to choose the smallest to be the recipient. In this way, the risk that the 
distribution of the imputed variable does not reflect the original one (estimated from the donor 
dataset) is low. 

The R package StatMatch (D’Orazio, 2022) refers to the distance hot deck method as “nearest 
neighbor distance hot deck”, and implements it in the function NND.hotdeck (see Section 3 for 
references on the R packages to implement statistical matching). The function searches in the donor 
file the nearest neighbor of each unit in the recipient file according to a distance function computed 
on the matching variables. To reduce the effort in computing distances, D’Orazio (2011) suggests 
defining some donation classes, usually defined according to one or more categorical common 
variables. 

For a simple example, see Toy Example 2.2. 
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1.2.3.Macro approach 

Beyond the micro approach described in the previous sections, statistical matching provides another 
apparently different way to pursue data integration: the so-called macro approach (D’Orazio et al., 
2006). 

The macro approach uses the source files in order to have a direct estimation of the joint distribution 
function (or of some of its key characteristics, such as the correlation) of the variables of interest 
that have not been observed in common. 

Most of the statistical matching methods are built on the aforementioned CIA. If the CIA holds, the 
joint density of the variables of interest in the two data sources and the matching variables can be 
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factorised into the product of conditional densities (the pairwise relationship between the target 
variables and the matching ones) times the marginal density of the matching variables; this way, the 
model is identifiable and the macro approach consists of directly estimating it. 

It is important to underline that the CIA cannot be tested; it could be a wrong and misleading 
assumption if it is introduced when it does not hold. 

1.2.4 Assessing uncertainty 

As mentioned before, the CIA cannot be tested since the variables of interest Y and Z are never jointly 

observed; when it is likely to be a misspecified assumption, more uncertainty must be yielded in the 
model. 

In particular, as firstly suggested by Rubin (1986), one should consider a set of plausible parameters 
rather than a point estimate and generate a collection of synthetic datasets, rather than a single one. 
In the context of multiple imputation, fully Bayesian techniques are well-suited. 
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2.Combining probability and nonprobability 
samples 
Probability sampling continues to be the gold standard for acquiring a representative sample: in 
probability samples, the selection probability is known and therefore the estimations from a 
probability sample can rely on well-known statistical inference methods, often design-based. 
Nonetheless, the measurement of the study variable can also be derived from a non-probability 
sample or from big data sources. 

The increasingly high costs for probability surveys, coupled with high non-response rates and the 
need to provide information at more granular levels have led to the necessity over time to integrate 
information from multiple sources. 

Initially, methods were suggested for integrating multiple probability samples. Recently, in survey 
statistics, there has been a surge in the availability of nonprobability data for research purposes, 
offering unprecedented opportunities for new scientific discoveries. 

However, they also pose additional challenges, including issues such as heterogeneity, selection 
bias, high dimensionality, and more. Specifically, this has emphasized the necessity to propose new 
suitable methods for combining probability and emerging nonprobability samples, as well as for 
merging probability samples with big nonprobability datasets as outlined in the review given by Yang 
and Kim (2020). Before describing these methods, let’s briefly review the techniques for integrating 
probability samples. 

Existing methods for probability data integration can be classified into two types, depending on the 
level of information to be combined: a macro approach combining the summary statistics from 
multiple surveys, and a micro approach creating synthetic imputations. 

The macro approach was employed to combine data from two independent probability samples for 
estimating totals at the population and domain levels by Renssen and Nieuwenbroek (1997), 
Hidiroglou (2001), Merkouris (2004), Wu (2004), Ybarra and Lohr (2008), and (Merkouris, 2010). 
(Merkouris, 2004) and Merkouris (2010) provided a rigorous treatment of the survey integration 
through the generalized method of moments. Fuller and J. (1999) describe an application in the 
National Resource Inventory. 

Very briefly, the proposals in this approach seek to devise a composite estimation method for 
aligning estimators of common characteristics in scenarios involving multiple surveys on the same 
population or multiple samples within the same survey. In addition, they allow to generate more 
efficient estimators for non-common variables, exploiting the strength of their correlation with the 
common ones. 

In the micro approach, mass imputation (also called synthetic data imputation) is the commonly 
used technique for creating imputed values for items not observed in the current survey by 
incorporating information from other surveys. For simplicity, let’s consider the case of two 
probability samples, a small sample A and a large sample B. In sample A, observe auxiliary 
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information X and outcome Y, whereas in sample B, observe common auxiliary information X. The 
primary goal is to create proxy values of Y for the units in B, and then to use these values together 
with the associated sample weights in B to produce projection estimators. The proxy values are 
generated by first fitting a working model relating Y to X, based on the data from sample A used as 
a sort of training sample. 

When we have more datasets and the missingness structure is not monotone, the mass imputation 
is still used but it becomes more complicated. A sample with partial information may contain 
additional information for parameter estimation. In such a situation a joint model of all variables 
needs to be considered, and the EM algorithm can be used to estimate the model parameters. Kim 
et al. (2016) used an instrumental variable assumption for model identification and developed 
fractional imputation methods for statistical matching. Park and Kim (2016) presented an 
application of the statistical matching technique using fractional imputation in the context of 
handling mixed-mode surveys. Park et al. (2017) applied the method to combine two surveys with 
measurement errors. 
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2.1.Dealing with the biased nonprobability samples 
As outlined in the “Summary Report of the AAPOR Task Force on Nonprobability Sampling" by Baker 
et al. (2013), unlike probability sampling, there is no single framework that comprehensively 
encompasses all nonprobability sampling. However, all nonprobability samples share some 
common traits. First, they operate with unknown selection or inclusion mechanisms; second, they 
tend to be biased; third, they may not faithfully represent the target population. Nevertheless, 
nonprobability samples are readily available data sources that are more cost-effective and quicker 
to obtain. Consequently, a central focus for many survey sampling researchers in recent years has 
been addressing the challenge of developing methods to derive valid statistical inferences from 
these samples. A review is given in Wu (2022). 

All these methods stem from the recognition that generating valid inferences from nonprobability 
samples requires additional information from the target population. The likelihood of having access 
to complete auxiliary information is typically implausible in most scenarios. A popular framework is 
to assume that auxiliary variable information on the same population is available from an existing 
probability survey sample called reference probability sample. This framework was first used by 
Rivers (2007) and followed by several other authors including Vavreck and Rivers (2008), Lee and 
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Valliant (2009), Valliant and Dever (2011), Elliott (2017), and Chen et al. (2020), among others. 
Existing methods for integrating data from a probability sample and a nonprobability sample can be 
classified into the four types described in the following subsections respectively. However, one 
needs first to outline which are the assumptions needed to pursue the following data integrating 
techniques (see Detailbox 10 ). The main assumptions are three: 

A1 The auxiliary variables included in the nonprobability sample fully characterise the participation 
behaviour or the sample inclusion mechanism for units in the population. Statistically, this means 
that the sample inclusion indicator variable of the nonprobability sample and the outcome variable 
are independent given the set of auxiliary variables. 

A2 Every unit in the target population has a non-zero probability of being included in the 
nonprobability sample. 

A3 Units’ participations in the nonprobability sample are independent of each other given the set of 
auxiliary variables. This means that, in a nonprobability sample, each person’s decision to participate 
in the sample is not affected by what others decide given some auxiliary variables, e.g. some specific 
factors like age, gender, or other relevant variables. 
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2.1.1.Propensity score weighting 

The first method for combining probability and nonprobability samples is the so-called propensity 
score weighting (or adjustment) (Rosenbaum and Rubin, 1983). In this approach, the (unknown) 
probability of a unit being selected into the nonprobability sample, which is referred to as the 
propensity or sampling score, is modelled and estimated for all units in the nonprobability sample. 
The propensity scores for the nonprobability survey sample are theoretically defined for all the units 
in the target population. Estimation of propensity scores for units in the nonprobability sample 
requires an assumed model on the propensity scores and auxiliary information at the population 
level. Usually, the complete auxiliary information is not available, and under the setting assumed 
above (in which auxiliary information is available from an existing probability survey sample) the 
population auxiliary information is supplied by the reference probability sample. This leads to some 
differences in the estimation process. For example, when a parametric model is assumed, the 
maximum likelihood estimation method is replaced by the maximum pseudo-likelihood one. Three 
common parametric models are the logit model, the probit model, and the complementary log-log 
one. See Toy Example 3.1 for an illustration of the method. Non-parametric methods without 
assuming an explicit functional form for propensity scores can be an attractive alternative. The non-
parametric kernel regression estimator for the propensity score is given by Yuan et al. (2022). Chu 
and Beaumont (2019) considered regression-tree-based method for estimating the propensity 
scores. Their method involving the combined sample of the nonprobability sample and the reference 
probability sample, seeks to build a classification tree. The terminal nodes of the final tree are 
employed as homogeneous groups in terms of propensity scores in a manner akin to post-
stratification. 

After the estimation of the propensity scores for the units in the nonprobability sample, the 
subsequent propensity score weights can be directly used to calculate one of the two versions of 
the inverse probability-weighted estimator (the adaptation of the Horvitz-Thompson estimator and 
the adaptation of the Hàjek estimator for missing data problems and causal inference). Both these 
estimators may be sensitive to small values of estimated propensity scores. A robust alternative 
may be a post-stratified estimator in which the strata are formed based on homogeneous groups in 
terms of propensity scores. 

In general, both the subsequent adjustments, propensity score weighting and stratification can be 
used to adjust for selection biases; see, e.g., Lee and Valliant (2009), Elliott (2017) and Chen et al. 
(2020). (Stuart et al., 2011, 2015) and Buchanan et al. (2018) used propensity score weighting to 
generalise results from randomised trials to a target population. O’Muircheartaigh and Hedges 
(2014) proposed propensity score stratification for analysing a non-randomised social experiment. 

Finally, it is worth noting a weakness of the propensity score methods, is that they rely on a 
propensity score model (explicitly defined under the parametric approach) and are biased and highly 
variable if the model is misspecified (Kang and Schafer, 2007). 
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2.1.2.Calibration weighting 

A second approach for combining probability and nonprobability samples uses calibration weighting 
(Deville and Särndal, 1992; Kott, 2006). This technique calibrates auxiliary information in the 
nonprobability sample with that in the probability sample, so that after calibration the weighted 
distribution of the nonprobability sample is similar to that of the target population. Rather than 
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estimating the propensity score model and inverting the propensity score to address the selection 
bias of the nonprobability sample, the calibration strategy directly estimates the weights. The 
justification of the calibration approach, by Deville and Särndal (1992), relies on the linearity of the 
model for the target variable or on the linearity of the inverse probability of sampling weight, but the 
linearity conditions are unlikely to hold for non-continuous variables. More in general, the robustness 
of the approach relies on the correct specification of the calibration approach. It should be noted 
that not everyone in the literature categorises this approach as a standalone method: at times, it is 
referred to as a weighting approach that encompasses both the propensity score and the calibration 
techniques. See Toy Example 3.2 for an illustration of the method. 
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2.1.3.Mass imputation 

The third method is the mass imputation or prediction approach, which imputes the missing values 
for all units in the probability sample. In the usual imputation for missing data analysis, the 
respondents in the sample constitute a training dataset for developing an imputation model. In the 
mass imputation, an independent nonprobability sample is used as a training dataset for developing 
the imputation model, and imputation is applied to all units in the probability sample; see, e.g., Breidt 
et al. (1996); Rivers (2007); Kim and Rao (2012); Chipperfield et al. (2012); Bethlehem (2016); Yang 
and Kim (2018). Different imputation models, parametric and non-parametric, have been suggested 
in the literature, the choice depends on the nature of the response variable but also on the type and 
quantity of auxiliary variables available for both samples (probability and nonprobability). Brick 
(2015) discussed diagnostics and model checking. 

After imputing the values of the response variable for the units in the probability sample, these 
values, along with the weights associated with the units in the probability sample (i.e., the reciprocal 
of the inclusion probabilities), are used to calculate a design-based estimator for the descriptive 
parameter of interest. See Toy Example 3.3 for an illustration of the method. The consistency of this 
estimator relies on a correct specification of the imputation model and of the estimate of the model 
parameters. 
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2.1.4.Doubly Robust Procedure 

To improve the robustness against model misspecification, this approach combines the weighting 
and the imputation approaches, employing both the propensity score and the outcome model. 

The Doubly Robust (DR) estimator of the mean is composed of two terms, one is the model-based 
prediction of the mean (i.e. corresponds to the estimator used adopting the mass imputation 
approach), the other is a propensity score-based adjustment using the errors given by the 
differences between the observed and model-predicted response for the units in nonprobability 
sample. See Toy Example 3.4 for an illustration of the method. The magnitude of the adjustment 
term is negatively correlated to the goodness of fit of the outcome model. Consequently, the DR 
estimator is unbiased if either the propensity score model or the outcome model is correctly 
specified, but not necessarily both. Moreover, it is important to note that its double robustness 
property does not require the knowledge of which of the two models is correctly specified. This 
estimator has been proposed by Chen et al. (2020) under the two-sample setting assumed at the 
beginning of the section, and assuming a logistic model for the propensity score and a parametric 
regression model for the outcome. Note that the DB mean estimator suggested by Chen et al. (2020), 
is analogous to the model-assisted generalised difference estimator discussed in Wu and Sitter 
(2001) under scenarios where the complete (i.e. at the population level) auxiliary information is 
available. 

Recently, Chen et al. (2022) suggested an alternative approach to produce a double robust estimator 
by using the pseudo empirical likelihood method and considering both the normalisation constraint 
(on the probability measure over the units in the nonprobability sample) and the model calibration 
constraint (on an assumed outcome regression model). 
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2.2.Combining probability sampling and big data 
In the past decade, more and more data became available, including large administrative record 
datasets, remote-sensing data derived from satellite images (McRoberts et al., 2010), mobile sensor 
data (Palmer et al., 2013), and web survey panels (Tourangeau et al., 2013). While such data sources 
provide timely data for a large number of variables and population elements, they are nonprobability 
samples and often fail to represent the target population of interest because of inherent selection 
biases. Thus, it is essential to combine such data with probability samples. How to combine such 
information with survey data to provide better estimates for the population parameters is a new 
challenge that survey statisticians face today. Tam and Clarke (2015) presented an overview of 
some initiatives of big data applications in official statistics of the Australian Bureau of Statistics. 

Depending on the roles in statistical inference, big data can be classified into two types: one with 
large sample sizes (large n) and the other with a rich set of covariates (large p). In the first type, the 
nonprobability sample can be large in sample size. How to leverage the rich information in the big 
data to improve finite population inference is an important research topic that needs to be explored. 
In the second type, there are a large number of variables. There is a vast literature on variable 
selection methods for prediction, but very few contributions on variable selection for data integration 
that can successfully recognise the strengths and the limitations of each data source and utilise all 
captured information for finite population inference. 

In cases where nonprobability data have large sample sizes (large n), it is crucial to differentiate 

between two scenarios based on whether the response variable is observed in the probability sample 
or not: 

• When the probability sample includes the response variable, its mean, total, or other related 
parameters can be estimated by the commonly used estimator solely from the probability 
sample. In this situation, the auxiliary information in the big data can be used to improve this 
estimator. A common framework is to assume that the membership to the big data can be 
determined throughout the probability sample. Additionally, it is assumed the subsample of 
units in the probability sample constitutes a second-phase sample from the big data sample, 
which acts as a new population. Consequently, it is possible to calibrate the information in the 
second-phase sample to be the same as the new acting population. This idea has been 
explored by Yang and Ding (2020) and Kim and Tam (2021) among others. Kim and Tam (2021) 
have also implemented their calibration method, to incorporate big data auxiliary information, 
on the official statistics from the Australian Bureau of Statistics. 

• When the response variable is present in the big dataset, but not in the probability sample, the 
situation is equivalent to the one described for combining probability and nonprobability 
samples. Hence, the same solution may be applied. Currently, the prevailing approach is mass 
imputation, wherein a predictive model is trained using big data and subsequently employed 
to impute the values of the response variable in the probability sample. Beyond parametric 
methods, nonparametric approaches such as nearest-neighbor imputation can also be 
considered (Yang and Kim, 2018). In the international forest inventory community, for 
combining ground-based observations with images from remote sensors, is popular to use a 
K-nearest-neighbour imputation strategy in which instead of using one nearest neighbour, 
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multiple nearest neighbours in the big data sample is identified, and the average response is 
used as the imputed value (McRoberts et al., 2010). 

In the presence of big data of the second type, where there is a large number of auxiliary variables 
(large p), variable selection becomes crucial. This is essential for discerning the strengths and 
limitations of each data source and ensuring the utilisation of all and only the information relevant 
to inference about the finite population. With a large number of auxiliary variables existing 
integration methods may become unstable or even infeasible, since adding irrelevant auxiliary 
variables can introduce a large variability in the estimation. Gao and Carroll (2017) proposed a 
pseudo-likelihood approach for combining multiple non-survey data with high dimensionality; this 
approach requires all likelihoods to be correctly specified and therefore is sensitive to model mis-
specification. Chen et al. (2018) proposed a model-based calibration approach using LASSO; this 
approach relies on a correctly specified outcome model. Yang (2020) proposed a doubly robust 
variable selection and estimation strategy that works in two steps. In the first step, it selects a set 
of variables that are important predictors of either the sampling score or the outcome model using 
penalised estimating equations. In the second step, it re-estimates the models’ parameters by using 
the joint set of covariates selected from the first step and calculates the doubly robust estimator. 
This double robust estimator allows model misspecification of either the sampling score or the 
outcome model. Moreover, in the existing highdimensional causal inference literature, the doubly 
robust estimators have been shown to be robust to selection errors using penalisation (Farrell, 2015) 
or approximation errors using machine learning (Chernozhukov et al., 2018). 

 

3.Implementation 
This section provides useful information for the implementation of the methods described so far. 
The blue boxes below, one for each method introduced in this report, include the main packages for 
the most common software - R, Stata, and Python. For a general overview of the methods typically 
used in official and survey statistics that are implemented in R, see the CRAN Task View “CRAN Task 
View: Official Statistics & Survey Statistics”5. The task view is split into several parts: 

• First part: “Producing Official Statistics”. This first part is targeted at people working at 
national statistical institutes, national banks, international organizations, etc. who are 
involved in the production of official statistics and using methods from survey statistics. 

• Second part: “Access to Official Statistics”. This second part’s target audience is everyone 
interested in using official statistics results directly from within R. 

• Third part: “Related Methods” shows packages that are important in official and survey 
statistics, but do not directly fit into the production of official statistics. 

 

 
 
5 CRAN Task View:Official Statistics & Survey Statistics: https://cran.r-project.org/web/views/OfficialStatistics.html 

https://cran.r-project.org/web/views/OfficialStatistics.html
https://cran.r-project.org/web/views/OfficialStatistics.html
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abeR 

blink   

 

Stata code 

website. 

• Dedupe   

 

• fastLink   

 

fedmatch   

 

Reclin2   

 

• RecordLinkage   

 

• Record Linkage   
 

• RELAIS   
 

• Splink   

 

https://github.com/uguryi/abeR
https://github.com/uguryi/abeR
https://cran.r-project.org/web/packages/blink/index.html
https://github.com/uguryi/abeR
https://github.com/uguryi/abeR
https://ranabr.people.stanford.edu/historical-record-linking
https://ranabr.people.stanford.edu/historical-record-linking
https://ranabr.people.stanford.edu/historical-record-linking
https://ranabr.people.stanford.edu/historical-record-linking
https://github.com/dedupeio/dedupe
https://cran.r-project.org/web/packages/blink/index.html
https://cran.r-project.org/web/packages/blink/index.html
https://cran.r-project.org/web/packages/fastLink/index.html
https://cran.r-project.org/web/packages/fastLink/index.html
https://cran.r-project.org/web/packages/fedmatch/index.html
https://cran.r-project.org/web/packages/fedmatch/index.html
https://cran.r-project.org/web/packages/reclin2/index.html
https://cran.r-project.org/web/packages/fedmatch/index.html
https://cran.r-project.org/web/packages/fedmatch/index.html
https://cran.r-project.org/web/packages/RecordLinkage/index.html
https://cran.r-project.org/web/packages/fedmatch/index.html
https://cran.r-project.org/web/packages/fedmatch/index.html
https://recordlinkage.readthedocs.io/en/latest/
https://cran.r-project.org/web/packages/fedmatch/index.html
https://cran.r-project.org/web/packages/fedmatch/index.html
https://www.istat.it/en/methods-and-tools/methods-and-it-tools/process/processing-tools/relais
https://www.istat.it/en/methods-and-tools/methods-and-it-tools/process/processing-tools/relais
https://github.com/moj-analytical-services/splink#fast-accurate-and-scalable-probabilistic-data-linkage
https://recordlinkage.readthedocs.io/en/latest/
https://recordlinkage.readthedocs.io/en/latest/
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• MatchIt   
 

• StatMatch   
 

• NonProbEst   
 

• nonprobsvy   
 

this link.   
 

https://cran.r-project.org/web/packages/MatchIt/index.html
https://cran.r-project.org/web/packages/MatchIt/index.html
https://cran.r-project.org/web/packages/MatchIt/index.html
https://cran.r-project.org/web/packages/StatMatch/index.html
https://cran.r-project.org/web/packages/MatchIt/index.html
https://cran.r-project.org/web/packages/MatchIt/index.html
https://cran.r-project.org/web/packages/NonProbEst/index.html
https://cran.r-project.org/web/packages/StatMatch/index.html
https://cran.r-project.org/web/packages/StatMatch/index.html
https://github.com/ncn-foreigners/nonprobsvy
https://cran.r-project.org/web/packages/NonProbEst/index.html
https://cran.r-project.org/web/packages/NonProbEst/index.html
https://github.com/ncn-foreigners/software-tutorials
https://github.com/ncn-foreigners/nonprobsvy
https://github.com/ncn-foreigners/nonprobsvy
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4 Conclusions 
Throughout the last few decades, national statistical agencies and international organisations have 
relied heavily on sample surveys to produce crucial statistical information. Surveys have played an 
essential role in providing reliable, accurate, and regularly updated data. However, due to the high 
costs of probabilistic surveys and the decline in response rates it has become increasingly 
challenging, if not impossible, to obtain comprehensive and up-to-date information on the 
phenomena of interest through traditional investigation techniques based on probability samples. 
Moreover, many of these phenomena urge to be measured in a timely and granular manner, e.g., 
among others, climate change, pollution, social inclusion, poverty. 

Data coming from a variety of non-probabilistic large-scale observations, such as digital 
administrative records, satellite data, and web data, have the potential to complement and enrich 
traditional data sources. These alternative data sources, that are becoming increasingly available 
and affordable, yet differ in their characteristics, levels of detail, and degrees of quality. 

From these considerations arises the challenge of developing new statistical methods to 
appropriately combine data from multiple sources in order to make use of all the available 
information on a specific phenomenon under study. 

In recent years, numerous researchers have made significant contributions in the domain of data 
integration methods in official statistics and survey methodology. However, the dissemination of 
these refined techniques is proving difficult among non-statisticians. This report provides an insight 
into the challenges and opportunities associated with various topics of data integration, such as 
record linkage, statistical matching, and probability and non-probability sample combination, 
providing a comprehensive overview for a broader audience interested in this evolving landscape of 
statistical methods. Thought for a multidisciplinary audience, each topic’s presentation is 
intentionally kept non-technical and enriched with toy/practical examples to illustrate the various 
methods presented. Additionally, for each method, the primary packages for the most common 
software - R, Stata, and Python - are indicated. 

The flowchart in the Appendix can be a useful tool to guide the reader in the identification of the 
most appropriate method according to the characteristics of the available data and the purposes for 
which the integration is being done. 
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Figure 5: Flowchart: Data Integration methods B 
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